
Open LED Race Network Protocol

Table of Contents
Open LED Race Network Protocol..1

Terminology..2
MQTT Basics..2

Retained Messages and Last Will...2
Retained Message..2
Last Will and Testament (LWT)..2
Retained Message + Last Will and Testament...3

MQTT Infrastructure...4
OLR Network fundamentals...4
MQTT Topics Set used in the OLRNetwork..4

Topics related to Devices...4
Topics related to Races..5
OLR Network “Pool ID”...5

MQTT Payloads - OLRNetwork messages..6
Device Status Topics: OLR/basePool/device/status/<DeviceId>..7
Race Status Topics: OLR/basePool/race/status/<RaceId>...9
Race Participants Topics: OLR/basePool/race/<RaceId>/Participants/<DeviceId>.......................11
Race Configuration Topics: OLR/basePool/race/<RaceId>/Config...12
Car situation in Race OLR/basePool/race/<RaceId>/Cars/<CarId>..13
Race Telemetry OLR/basePool/race/<RaceId>/Telemetry..14

Document revisions:..15

Open LED Race Network edition - Network Protocol Pag: 1/15 Revision: 2020-04-24

Terminology
In the following part of this doc the terms “OLR”, “Device”, “RaceDevice”, “Racetrack” will indicate
the same thing:

A network-connected Open Led Race Device + an OLR Controller ([Computer running Network
Client Software] + [Arduino running Software + Led Strip]).

“Race” indicates a set of OLRs virtually connected to create a Relay Race

“OLR Network” indicates the Network infrastructure where the Devices connect to partecipate to a
Relay Race.

The present document describes the Application Protocol used in the OLR Network. The OLRNetwork
protocol uses MQTT as “transport” for its messages (MQTT payloads).

“OLR Network Software”, “OLR Client Software” or simply “Network Client” indicates the software
running on the Computer that “enables” a RaceDevice to communicates with the Network.

MQTT Basics

Retained Messages and Last Will

Retained Message

A retained message is a normal MQTT message with the retained flag set to true. The broker stores the
last retained message and the corresponding QoS for that topic. Each client that subscribes to a topic
pattern that matches the topic of the retained message receives the retained message immediately after
they subscribe. The broker stores only one retained message per topic.

In other words, a retained message on a topic is the last known good value. The retained message doesn’t
have to be the last value, but it must be the last message with the retained flag set to true.

This feature is used in the “Open Led Race Network”

Last Will and Testament (LWT)

The Last Will and Testament feature provides a way for clients to respond to ungraceful disconnects in an
appropriate way.

In MQTT, you use the Last Will and Testament (LWT) feature to notify other clients about an
ungracefully disconnected client. Each client can specify its last will message when it connects to a
broker. The last will message is a normal MQTT message with a topic, retained message flag, QoS,
and payload. The broker stores the message until it detects that the client has disconnected ungracefully.
In response to the ungraceful disconnect, the broker sends the last-will message to all subscrobed clients
of the last-will message topic. If the client disconnects gracefully with a correct DISCONNECT message,
the broker discards the stored LWT message.

Open LED Race Network edition - Network Protocol Pag: 2/15 Revision: 2020-04-24

Retained Message + Last Will and Testament

In real-world scenarios, LWT is often combined with retained messages to store the state of a client on a
specific topic.

For example, Client1 first sends a CONNECT message to the broker with a lastWillMessage that has
“Offline” as the payload, the lastWillRetain flag set to true, and the lastWillTopic set to client1/status.
Next, the client PUBLISH a message with the payload “Online” and the retained flag set to true to
the same topic (client1/status). As long as client1 stays connected, newly-subscribed clients to the
client1/status topic receive the “Online” retained message. If client1 disconnects unexpectedly, the
broker publishes the LWT message with the payload “Offline” as the new retained message. Clients
that subscribe to the topic while Client1 is offline, receive the LWT retained message (”Offline”)
from the broker.

This pattern of retained messages keeps other clients up to date on the current status of Client1 on a
specific topic.

Note:
In the following part of this Doc the terms “Pub” and “Sub” stands for Publish and Subscribe to
Topics.

Source:
• https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/
• https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/

Open LED Race Network edition - Network Protocol Pag: 3/15 Revision: 2020-04-24

https://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament/
https://www.hivemq.com/blog/mqtt-essentials-part-8-retained-messages/

MQTT Infrastructure

OLR Network fundamentals

The whole system is based on a simple assumption:

At any moment in time, [Retained Messages] ‘stored’ in topics described below, contains a complete
description of the OLR Network Status:

• Connected clients (Clients list)
• Active races (Race List)

◦ Participants

When a user “turn on” its Client and connects to the OLR Network, receives Retained Messages
describing the current situation of any other NetworkClient (OLR device) and any “Currently Active
Race”.

The Client does not rely on anything else to reconstruct the network situation at startup.

The real situation is more complicated than this. For example, think about a Client participating to a Race
in “Racing” status (cars are moving here or in another participating circuit). If it disconnects
unexpectedly (network problem) you will have a Race where one of the participating Racetracks
disappear...

The current test implementaton of the OLRNetwork Client does not manage these situations.

MQTT Topics Set used in the OLRNetwork

Topics used in the current implementation can be diveded in two sets:

• Devices: Topics related to Devices connected to the Network (Status, etc)
• Races: Topics related to Races currently defined in the Network

Topics related to Devices

Devices currently connected to the OLRNetwork

OLRN Devices Topic Root = “OLR/basePool/device” Implemented: (N)ot yet (P)artial (Y)es

OLR/basePool/device/status/<DeviceId> (*) Device List

• Each OLR Publish its Status on the specific “status/<DeviceId>” sub-topic
• Each OLR Sub to deviceRoot/status/+ to receive updates for Devices list (who is online)
• Is the topic used by the client to specify the Last Will message=Offline when it connects to a broker.

Y

OLR/basePool/device/Recv/<DeviceId>
• Each OLR Sub to its own <DeviceId> topic
• Other OLR uses the Recv/<DeviceId> topic to send messages only to one OLR

N

OLR/basePool/device/broadcast
• Each OLR Sub to this topic
• Each OLR Pub on this topic to send messages to every other OLR.

N

Open LED Race Network edition - Network Protocol Pag: 4/15 Revision: 2020-04-24

Topics related to Races

Races currently in use in the OLRNetwork

OLRN Race Topic Root = “OLR/basePool/race” Implemented: (N)ot yet (P)artial (Y)es

OLR/basePool/race/status/<RaceId> (*) Races List

• Each OLR Sub to [OLR/basePool/race/status/+] to receive updates for the Races list
• The NetworkClient creating the race, or changing race status, Pub on the status/<RaceId> sub-topic

Y

OLR/basePool/race/<RaceId>/Participants/<DeviceId> (*) Race Participants List)

• On race “<RaceId>” creation, every client:
◦ Sub to [.../<RaceId>/Participants/+] to receive updates for the Participants list

• When a Client Join a Race=<RaceId>:
◦ Pub on the <RaceId>/participants/<DeviceId> sub-topic it’s status

Y

OLR/basePool/race/<RaceId>/Config
• When a Client Join a Race=<RaceId>:

◦ Sub to [OLR/basePool/race/<RaceId>/Config] to receive Config params for the race (its order in
the race, laps number, etc)

• The Client in charge of Race Configuration:
◦ Pub on the <RaceId>/Config the complete Parameters Set

Y

OLR/basePool/race/<RaceId>/Cars/<CarId>
• When a Client Join a Race=<RaceId>:

◦ SUB to [OLR/basePool/race/<RaceId>/Cars/+] to receive car’s data (basically to know in wich
OLR is the car in each moment)

• When a NetworkClient Receive a Car (car ENTER in the Device, coming from another):
◦ Pub on the <RaceId>/cars/<CarId> to update the car’s current OLR

Y

OLR/basePool/race/<RaceId>/Telemetry
Used in Race Visualization

• The Devie currently active (i.e. with cars in it) Pub car’s position data
• A Race Visualization App will subscribe to this topic and display Race Sitution for each car

Y

OLR Network “Pool ID”

Is the “root string” for topics. As described above, every topic “starts” with:
• OLR/<PoolId>/

The “<PoolId>” string identifies a “SubSet” (group) of OLR Devices connected to the
network.

User Interface will allow the user to choose a “Pool” (group) its device belongs to. Other
devices using the same “basePool” (i.e in the same group) will be “visible” to make Relay
Races.

In the first implementation “PoolID” is not managed by UX - always set to:
“OLR/basePool/” (Please note: This is managed in the “config.json” file. You can change it
with no need to change the code)

Open LED Race Network edition - Network Protocol Pag: 5/15 Revision: 2020-04-24

MQTT Payloads - OLRNetwork messages

We have seen the list of ‘Channels’ (topics) where the informations flows.
Now we’ll see the ‘Format” of the information transmitted in these channels.

>>> One Channel (MQTT topic) have one defined ‘message format’ <<<

JSON-encoded string is the preferred format used in messages (MQTT payloads).

Some channels, notably “CarStatus”, use a plain text format, to avoid JSON encode/decode overhead on
send/receive

Message example: Payload for DeviceStatus topic

This was transmitted by a device with id=”TDO5e6cf279e3aed”

Sample message: Topic [OLR/AD2020/device/status/TDO5e6cf279e3aed]
{
 "VV": "0.4", ← Protocol Version
 "TI": "TDO5e6cf279e3aed", ← Id
 "TM": "Harry.Tuttle", ← User Name
 "TN": "Test Track 3 – Naked LedStrip (IP30)", ← Device Description
 "TS": "A1" ← Status
}

As you see, this channel uses a JSON-encoded string.

You may also see how JSON field names and some fields values are “encoded”:
 (TS:A1 means “Status”:”Online”.)

In the following part of this doc you will find the definition of the Specific format of the message
transmitted over every channel, plus the coded values used.

Open LED Race Network edition - Network Protocol Pag: 6/15 Revision: 2020-04-24

Device Status Topics: OLR/basePool/device/status/<DeviceId>

Clients use this topic to Publish updates about their current status.

<DeviceId> indicates the ID of the Client Device publishing its status (in other words
each device have its own topic – no other device publish on it)

Message format for this channel: JSON Encoded

Sample MessageDeleted
Topic: OLR/basePool/device/status/TDO5e5f9d51ecc61
JSON Payload: {
 "VV": "0.4", ← Protocol Version
 "TI": "TDO5e5f9d51ecc61", ← Device Id
 "TM": "Harry.Tuttle", ← User Name
 "TN": "HAM Test Track 1 - SLIM Case (left)", ← Device Description
 "TS": "R0" ← Status
}

(!) All fields in the message above are required (any message sent on the channel needs to includes all of
the fields above)

Notes:
The DeviceId field (TI) is redundant - is the “last part” of the topic.
Not a big overhead and the code results easier to understand.

JSON Message Attributes

VV Protocol Version

TI Device Id

TM User who registered the Device

TN Device Description

TS Device Status → Coded values – see below

Open LED Race Network edition - Network Protocol Pag: 7/15 Revision: 2020-04-24

Device Status Attribute → Coded values

00 Offline

01 Online - Network Client register to the OLRNetwork

A0 Available – Successfull handshake with Device

J1 Subscribing to Race

L0 Leaving a Race

R0 Subscribed to Race

R1 Configuring a Race

R2 Configuring Local Phisical Device

R3 Configured for Race

R9 Error configuring Phisical Device

R4 Ready to Start

R5 Racing

R6 Race Complete

R7 Play Race Again

GN Not Responding

See source file: [Protocol.pde]→ Class: Protocol.Network.Channel.DeviceStatus
Encode/Decode methods used when a message is Sent/Receives on the Network

Open LED Race Network edition - Network Protocol Pag: 8/15 Revision: 2020-04-24

Race Status Topics: OLR/basePool/race/status/<RaceId>

Clients use this topic to send updates about Race Status.

<RaceId> indicates the ID of the Race – Any devices participating to the Race may
Publish on this topic

Message format for this channel: JSON Encoded

Sample Message
Topic: OLR/basePool/race/status/tIM7Yron7Qaz
JSON Payload: {
 "VV": "0.4", ← Protocol Version
 "RS": "C1", ← Race Status
 "RU": "TDO5e5f9d51ecc61", ← Updating DeviceId (who publish the msg)
 "RI": "tIM7Yron7Qaz", ← Race Id
 "RN": "HAM Test 2 Tracks" ← Race Name
}

(!) All fields in the message above are required (any message sent on the channel needs to includes all of
the fields above)

Notes:
The RaceId field (RI) is redundant - is the “last part” of the topic.
Not a big overhead and the code results easier to understand.

JSON Message Attributes

VV Protocol Version

RI Race Id

RN Race Name

RU Device Id of the Device who published the message (sender)

RS Race Status → Coded values – see below

Open LED Race Network edition - Network Protocol Pag: 9/15 Revision: 2020-04-24

Race Status Attribute → Coded values

A0 Acceping Participants

C1 Configuring

C2 Configured

C3 Waiting for Participant's Phisical Device Configuration

C4 Error configuring one of the OLR Participants

R0 Participans Configured

R3 Ready to Start

R4 Countdown

R5 Racing

R6 Paused

R7 Resumed

R8 Comlete

DD Deleted

source file: [Protocol.pde]→ Class: Protocol.Network.Channel.RaceStatus
Encode/Decode methods used when a message is Sent/Receives on the Network.

Open LED Race Network edition - Network Protocol Pag: 10/15 Revision: 2020-04-24

Race Participants Topics: OLR/basePool/race/<RaceId>/Participants/<DeviceId>

A client use this topic to send updates about its “Status” as participant to the Race (Join, leave, etc).

<RaceId> indicates the ID of the Race
<DeviceId> indicates the ID of the Client Device publishing its status as
‘Participant”.
 This means each device have its own topic – no other device publish on it

Message format for this channel: JSON Encoded

Sample Message
Topic: OLR/basePool/race/tIM7Yron7Qaz/Participants/TDO5e5f9d51ecc61
JSON Payload: {
 "VV": "0.4", ← Protocol Version
 "TI": "TDO5e5f9d51ecc61", ← Device Id
 "TM": "Harry.Tuttle", ← User Name
 "TN": "HAM Test Track 1 - SLIM Case (left)", ← Device Description
 "TS": "L0" ← Status
}

In the example above, the Status=L0 means “Leaving the race”. The message was sent by a Client
“Leaving” a realy race after it finished.

RaceParticipantStatus Channel uses same message format as Device Status Channel

– Please refer to Device Status Attributes and Coded Values

Open LED Race Network edition - Network Protocol Pag: 11/15 Revision: 2020-04-24

Race Configuration Topics: OLR/basePool/race/<RaceId>/Config

Used to share between participants the Configuration Parameters for a race (racetrack order, Laps, etc)

<RaceId> indicates the ID of a specific
• Every participant Sub to the topic
• The Client in charge for configuration will Pub on the topic

Message format for this channel: JSON Encoded

Sample Message
Topic: OLR/basePool/race/tIM7Yron7Qaz/Config
JSON Payload: {
 "VV": "0.4", ← Protocol Version
 "RC": [← JSON ARRAY: One item for each Participant
 { ← Item #1: Cfg for First Participant
 "LO": 1, ← Laps
 "RE": 2, ← Repeat
 "TI": "TDO5e6bc02843177",← Device Id (Identify the Participant)
 "PO": 0 ← Position
 },
 { ← Item #2: Cfg for Second Participant
 "LO": 1,
 "RE": 1,
 "TI": "TDO5e5f9d51ecc61",
 "PO": 1
 }
]
}

(!) The JSON Array will contain one Item for each participant.

In other words, the client in charge of the configuration will publish on this channel one message
containing the configuration for every participant.

JSON Message Attributes

VV Protocol Version

RC JSON Array of Config Values for each Device

TI Device Id

LO Laps for each section of the race in this device

RE How many times the Race passes through the circuit.

PO Order for the Relay Race. The device with lower Position (ex: 1) will be the one
where the race Starts.

source file: [Protocol.pde]→Class: Protocol.Network.Channel.RaceConfiguration
Encode/Decode methods used when a message is Sent/Receives on the Network.

Open LED Race Network edition - Network Protocol Pag: 12/15 Revision: 2020-04-24

Car situation in Race OLR/basePool/race/<RaceId>/Cars/<CarId>

Messages in this topic are used, during a Race, to ‘send’ a car from one circuit to the next one.

<RaceId> indicates the ID of the Race
<CarId> indicates the ID of the Car

Participants Sub to [OLR/basePool/race/<RaceId>/Cars/+] to know where is the car (in wich Racetrack
is curently the Car) .

When a Racetrack “receives” a Car (the car “enter” in the Device, coming from another), it Publish on
this Channel to let everybody knows the car “arrived” in the Device.

Message format for this channel: Plain Text
This topic uses a plain text format, to avoid JSON encode/decode overhead on send/receive
CarStatus messages are exchanged to ‘send’ a car from one circuit to the next one. This process
needs to be as fast as possible to minimize the ‘lag’ between “car leave” (the car disappears from
Circuit A) and “car enter” (the car appears in Circuit B)

Sample Message
Topic: OLR/basePool/race/tIM7Yron7Qaz/Cars/1
Payload: “X:1,Red,TDO5e6bc02843177,3,8”

The Payload is a string starting with a “Text Payload Header” (X:) and containing 5 comma-
separated values: Car Id, CarName, CurrentDevice, Car Status, Car Speed

X: TEXTPAYLOAD_HEADER
Used in the protocol to identify the payload type=TEXT - JSON payloads starts with “{“

1 Car Id

Red Car Name

TDO5e6bc02843177 Current Device Id (in which OLR Device the car is currently ‘running’

3 Car Status → Coded Values –see below

8 Speed

Car Status → Coded values

0 Stop

1 Racing

2 Leaving

3 Leaved

8 Winner

Open LED Race Network edition - Network Protocol Pag: 13/15 Revision: 2020-04-24

Race Telemetry OLR/basePool/race/<RaceId>/Telemetry

The device where a Car is currently ‘running’ send messages on this channel to describe the current car
position:

<RaceId> indicates the ID of a specific Race
Newtork Client software just Publish on this channel – Does not Sub.
The data will be possibly used in the future to develop a “Race visualization App”

Message format for this channel: JSON Encoded

Sample Message
Topic: OLR/basePool/race/tIM7Yron7Qaz/Telemetry
JSON Payload: {
 "R": 66, ← Relative position of the Car in the Circuit
 "C": 2, ← Car Id
 "T": "M", ← Sub-Track Id
 "TI": "TDO5e5f9d51ecc61", ← Device Id (Device where the Car is currently racing)
 "L": 1 ← Lap Number
}

JSON Message Attributes

TI Device Id – OLR Device where the Car is currently racing.

C Car Id

T SubTrack Id – Section of the racetrack where the car is currently → Coded Values –
see below

L Current Lap Number ([1-99])

R Relative Position in the track - Expressed as a percentage ([00-99])

SubTrack Id (T) → Coded values

M Stop

B Racing

U Leaving

Values in these fields comes directly from the Arduino Firmware.
Please refer to the ‘OLRN_Protocol_Serial” doc for further details.

Open LED Race Network edition - Network Protocol Pag: 14/15 Revision: 2020-04-24

Document revisions:
• 2020_04_24: Luca

• Add: Message Attributes Tables
• Doc cleanup

• 2019_09_15: Luca
• First Publicly available version

Open LED Race Network edition - Network Protocol Pag: 15/15 Revision: 2020-04-24

